
Soleymani

Search with Other Agents
CE417: Introduction to Artificial Intelligence
Sharif University of Technology
Fall 2023

“Artificial Intelligence: A Modern Approach”, 3rd Edition, Chapter 5
Most slides have been adopted from CS188, UC Berkeley.

Adversarial Games

2

Game playing progress J

• Checkers: 1950: First computer player. 1994:
First computer champion: Chinook ended 40-year-
reign of human champion Marion Tinsley using
complete 8-piece endgame. 2007: Checkers
solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

• Go: Human champions are now starting to be
challenged by machines, though the best humans
still beat the best machines. In go, b > 300!
Classic programs use pattern knowledge bases,
but big recent advances use Monte Carlo
(randomized) expansion methods.

3

Game playing progress J

• Checkers: 1950: First computer player. 1994:
First computer champion: Chinook ended 40-year-
reign of human champion Marion Tinsley using
complete 8-piece endgame. 2007: Checkers
solved!

• Chess: 1997: Deep Blue defeats human champion
Gary Kasparov in a six-game match. Deep Blue
examined 200M positions per second, used very
sophisticated evaluation and undisclosed methods
for extending some lines of search up to 40 ply.
Current programs are even better, if less historic.

• Go :2016: Alpha GO defeats human
champion. Uses Monte Carlo Tree Search,
learned evaluation function by deep
learning.

4

• Many different kinds of games!

• Axes:
• Deterministic or stochastic?
• One, two, or more players?
• Zero sum?
• Perfect information (can you see the state)?

• Want algorithms for calculating a strategy (policy) which recommends a
move from each state

Types of games

5

Zero-Sum games

• Zero-Sum Games
• Agents have opposite utilities

(values on outcomes)
• Lets us think of a single value that one

maximizes and the other minimizes
• Adversarial, pure competition

• General Games
• Agents have independent utilities

(values on outcomes)
• Cooperation, indifference, competition,

and more are all possible
• More later on non-zero-sum games

6

Zero-sum game: agents’ goals are in
conflict and sum of utility values at the
end of the game is zero or constant

Deterministic games: Adversarial search
• Many possible formalizations, one is:
• States: S (start at s0)
• Players: P={1...N} (usually take turns)

• Actions:A (may depend on player / state)
• Transition Function: SxA ® S

• Terminal Test: S ® {t,f}
• Terminal Utilities: SxP ® R

• Solution for a player is a policy: S ®A

• Examples:Tic-tac-toe, chess, checkers

7

Single-agent trees

8

2 0 2 6 4 6… …

8

Value of a state

Non-Terminal states:
States:

8

2 0 2 6 4 6… … Terminal States:

Value of a state: The
best achievable outcome
(utility) from that state

9

Adversarial search

10

Adversarial game trees

-20 -8 -18 -5 -10 +4… … -20 +8

11

Minimax values

+8-10-5-8

States Under Agent’s Control:

Terminal States:

States Under Opponent’s Control:

12

Minimax Values

+8-10-5-8

-8 -10

-8

MAX nodes: under Agent’s control
V(s) = max V(s’)

s’ Î successors(s)

Terminal States:
V(s) = known

MIN nodes: under Opponent’s control
V(s) = min V(s’)

s’ Î successors(s)

13

Tic-Tac-Toe Game Tree

14

Adversarial Search (Minimax)

• Opponent is assumed optimal

• Minimax search:
• A state-space search tree
• Players alternate turns
• Compute each node’s minimax value:

the best achievable utility against a
rational (optimal) adversary

• Choose action leading to state
with best minimax value

8 2 5 6

max

min2 5

5

Terminal values:
part of the game

15

Minimax Implementation

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

def min-value(state):
initialize v = +∞
for each successor of state:

v = min(v, value(successor))
return v

def max-value(state):
initialize v = -∞
for each successor of state:

v = max(v, value(successor))
return v

16

Properties of minimax
• Complete?Yes (when tree is finite)

• Optimal?Yes (against an optimal opponent)

• Time complexity:𝑂(𝑏𝑚)

• Space complexity:𝑂(𝑏𝑚) (depth-first exploration)

• For chess, 𝑏 ≈ 35,𝑚 > 50 for reasonable games
• Finding exact solution is completely infeasible

17

Minimax Properties

Optimal against a perfect player. Otherwise?

10 10 9 100

max

min

18

Game Tree Pruning

19

Pruning

20

• Correct minimax decision without looking at every node
in the game tree
• α-β pruning
• Branch & bound algorithm
• Prunes away branches that cannot influence the final decision

Minimax: Example

12 8 5 23 2 144 6

3 2 2

3

21

Alpha-Beta pruning: Example

12 8 5 23 2 14

α =3 α =3

α = best option so far from any
MAX node on this path

• The order of generation matters: more
pruning is possible if good moves come first

3

3

22

Alpha-Beta pruning: An other example

23

1 5

≤23

≥5

2

3

Alpha-Beta Pruning

• General case (pruning children of MIN node)
• We’re computing the MIN-VALUE at some node n

• We’re looping over n’s children

• n’s estimate of the childrens’ min is dropping

• Who cares about n’s value? MAX

• Let α be the best value that MAX can get so far at any
choice point along the current path from the root

• If n becomes worse than α, MAX will avoid it, so we can
prune n’s other children (it’s already bad enough that it
won’t be played)

• Pruning children of MAX node is symmetric
• Let β be the best value that MIN can get so far at any
choice point along the current path from the root

MAX

MIN

MAX

MIN

a

n

24

Why is it called α-β?
• α: Value of the best (highest) choice found so far at any choice point along the

path for MAX
• 𝛽: Value of the best (lowest) choice found so far at any choice point along the

path for MIN

• Updating α and 𝛽 during the search process

• For a MAX node once the value of this node is known to be more than the
current 𝛽 (v ≥ 𝛽), its remaining branches are pruned.

• For a MIN node once the value of this node is known to be less than the
current 𝛼 (v ≤ 𝛼), its remaining branches are pruned.

25

Alpha-Beta implementation

def min-value(state , α, β):
initialize v = +∞
for each successor of state:

v = min(v, max-value(successor, α, β))
if v ≤ α

return v
β = min(β, v)

return v

def max-value(state, α, β):
initialize v = -∞
for each successor of state:

v = max(v, min-value(successor, α,β))
if v ≥ β

return v
α = max(α, v)

return v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

26

Alpha-Beta quiz

27

Alpha-Beta quiz

10

10

>=10
0

2

<=2

28

Alpha-Beta pruning properties
• This pruning has no effect on minimax value computed for the root!

• Values of intermediate nodes might be wrong
• Important: children of the root may have the wrong value
• So the most naïve version won’t let you do action selection

• Good child ordering improves effectiveness of pruning

• With “perfect ordering”:
• Time complexity drops to O(bm/2)
• Doubles solvable depth!
• Full search of, e.g. chess, is still hopeless…

• This is a simple example of metareasoning (computing about what to compute)

• For chess: only 3550 instead of 35100!!Yaaay!!!!!

29

?

Generalized minimax

• What if the game is not zero-sum, or has multiple players?

• Generalization of minimax:
• Terminals have utility tuples
• Node values are also utility tuples
• Each player maximizes its own component
• Can give rise to cooperation and
competition dynamically…

1,1,6 0,0,7 9,9,0 8,8,1 9,9,0 7,7,2 0,0,8 0,0,7

0,0,7 8,8,1 7,7,2 0,0,8

8,8,1 7,7,2

8,8,1

30

Video of Demo Smart Ghosts (Coordination)

31

Video of Demo Smart Ghosts (Coordination)
– Zoomed In

32

Summary
• Games are decision problems with ³ 2 agents
• Huge variety of issues and phenomena depending on details of interactions and

payoffs

• For zero-sum games, optimal decisions defined by minimax
• Implementable as a depth-first traversal of the game tree
• Time complexity O(bm), space complexity O(bm)

• Alpha-beta pruning
• Preserves optimal choice at the root
• Alpha/beta values keep track of best obtainable values from any max/min nodes

on path from root to current node
• Time complexity drops to O(bm/2) with ideal node ordering

• Exact solution is impossible even for “small” games like chess

33

Resource Limits

34

Resource Limits

• Problem: In realistic games, cannot search
to leaves!

• Solution: Depth-limited search
• Instead, search only to a limited depth in the tree
• Replace terminal utilities with an evaluation

function for non-terminal positions

• Guarantee of optimal play is gone
• More plies makes a BIG difference

? ? ? ?

-1 -2 4 9

4
min

max

-2 4

35

Computational time limit: Solution

36

• Cut off the search and apply a heuristic evaluation
function
• cutoff test: turns non-terminal nodes into terminal leaves
• Cut off test instead of terminal test (e.g., depth limit)

• evaluation function: estimated desirability of a state
• Heuristic function evaluation instead of utility function

• This approach does not guarantee optimality.

Heuristic minimax

37

𝐻!"#"!$% &,(=

#
𝐸𝑉𝐴𝐿(𝑠,𝑀𝐴𝑋) 𝑖𝑓 𝐶𝑈𝑇𝑂𝐹𝐹_𝑇𝐸𝑆𝑇(𝑠, 𝑑)

𝑚𝑎𝑥)∈$+,"-#. & 𝐻_𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝐸𝑆𝑈𝐿𝑇 𝑠, 𝑎 , 𝑑 + 1) 𝑃𝐿𝐴𝑌𝐸𝑅 𝑠 = MAX
𝑚𝑖𝑛)∈$+,"-#. & 𝐻_𝑀𝐼𝑁𝐼𝑀𝐴𝑋(𝑅𝐸𝑆𝑈𝐿𝑇 𝑠, 𝑎 , 𝑑 + 1) 𝑃𝐿𝐴𝑌𝐸𝑅 𝑠 = MIN

Evaluation functions

38

Evaluation functions

39

• For terminal states, it should order them in the same way
as the true utility function.
• For non-terminal states, it should be strongly correlated
with the actual chances of winning.
• It must not need high computational cost.

Evaluation functions based on features

40

• Example: features for evaluation of the chess states
• Number of each kind of piece: number of white pawns, black
pawns, white queens, black queens, etc

• King safety
• Good pawn structure
• …

Evaluation functions
• Evaluation functions score non-terminals in depth-limited search

• Ideal function: returns the actual minimax value of the position
• In practice: typically weighted linear sum of features:

• e.g. f1(s) = (num white queens – num black queens), etc.

41

Evaluation for Pacman

[Demo: thrashing d=2, thrashing d=2 (fixed evaluation function), smart ghosts
coordinate (L6D6,7,8,10)]

42

Video of Demo Thrashing (d=3)

43

Why Pacman Starves

• A danger of replanning agents!
• There are no point-scoring opportunities after eating the dot (within the horizon, two here)
• Therefore, waiting seems just as good as eating: he may go east, then back west in the next
round of replanning!

44

Why Pacman Starves

45

Fixing the evaluation function

Evaluation function:
of eaten dots + 1/(distance to the closest dot)

46

Video of Demo Thrashing -- Fixed (d=3)

47

Depth Matters

• Evaluation functions are always
imperfect

• Deeper search => better play
(usually)

• Or, deeper search gives same
quality of play with a less accurate
evaluation function

• An important example of the
tradeoff between complexity of
features and complexity of
computation

[Demo: depth limited (L6D4, L6D5)]

48

Uncertain Outcomes

49

Chance outcomes in trees

10 10 9 10010 10 9 100

9 10 9 1010 100
Tictactoe, chess
Minimax

Tetris, investing
Expectimax

Backgammon, Monopoly
Expectiminimax

50

Mixed Layer Types

• E.g. Backgammon
• Expectiminimax
• Environment is an extra “random agent”

player that moves after each min/max agent

• Each node computes the appropriate
combination of its children

51

Example: Backgammon

• Dice rolls increase b: 21 possible rolls with 2 dice
• Backgammon » 20 legal moves
• 4 plies = 20 x (21 x 20)3 = 1.2 x 109

• As depth increases, probability of reaching a given
search node shrinks
• Usefulness of search is diminished
• Pruning is trickier…

• Historic AI: TDGammon (1997) uses depth-2
search + very good evaluation function +
reinforcement learning:
world-champion level play

Image: Wikipedia

52

Expectiminimax

function value(s) returns a value
if Terminal-Test(s) then return Utility(s)
if Player(s) = MAX then return maxa in Actions(s) value(Result(s,a))
if Player(s) = MIN then return mina in Actions(s) value(Result(s,a))
if Player(s) = CHANCE then return suma in Actions(s) Pr(a) * value(Result(s,a))

function decision(s) returns an action
return the action a in Actions(s) with the highest
value(Result(s,a))

5 78 24 -12

1/2
1/3

1/6v = (1/2) (8) + (1/3) (24) + (1/6) (-12) = 10

53

What Values to Use?

• For worst-case minimax reasoning, evaluation function scale doesn’t matter
• We just want better states to have higher evaluations (get the ordering right)
• Minimax decisions are invariant with respect to monotonic transformations on values

• Expectiminimax decisions are invariant with respect to positive affine transformations
• Expectiminimax evaluation functions have to be aligned with actual win probabilities!

0 40 20 30 x2 0 1600 400 900

54

What Values to Use?

• For worst-case minimax reasoning, evaluation function scale doesn’t matter
• We just want better states to have higher evaluations (get the ordering right)
• Minimax decisions are invariant with respect to monotonic transformations on values

• Expectiminimax decisions are invariant with respect to positive affine transformations
• Expectiminimax evaluation functions have to be aligned with actual win probabilities!

0 40 20 30 x2 0 1600 400 900

x>y => f(x)>f(y)
f(x) = Ax+B where
A>0

55

Expectimax Search (One Player Game)
• Why wouldn’t we know what the result of an action will be?
• Explicit randomness: rolling dice
• Unpredictable opponents: the ghosts respond randomly
• Actions can fail: when moving a robot, wheels might slip

• Values should now reflect average-case (expectimax)
outcomes, not worst-case outcomes

• Expectimax search: compute the average score under
optimal play
• Max nodes as in minimax search
• Chance nodes are like min nodes but the outcome is uncertain
• Calculate their expected utilities

• i.e. take weighted average (expectation) of children

• Soon, we’ll learn how to formalize the underlying uncertain-
result problems as Markov Decision Processes

10 4 5 7

max

chance

10 10 9 100

56

Expectimax Pruning?

12 93 2

57

Worst-Case vs. Average Case (One player
Game)

10 10 9 100

max

min

Idea: Uncertain outcomes controlled by chance, not an adversary!

58

• In expectimax search, we have a probabilistic model
of how the opponent (or environment) will behave
in any state
• could be a simple uniform distribution (roll a die)
• could be sophisticated and require a great deal of

computation
• a chance node for any outcome out of our control:

opponent or environment
• The model might say that adversarial actions are likely!

What Probabilities to Use?

Having a probabilistic belief
about another agent’s action

does not mean that the
agent is flipping any coins!

59

• In expectimax search, we have a probabilistic model
of how the opponent (or environment) will behave
in any state
• could be a simple uniform distribution (roll a die)
• could be sophisticated and require a great deal of

computation
• a chance node for any outcome out of our control:

opponent or environment
• The model might say that adversarial actions are likely!

• For now, assume each chance node magically
comes along with probabilities that specify the
distribution over its outcomes

What Probabilities to Use?

Having a probabilistic belief
about another agent’s action

does not mean that the
agent is flipping any coins!

60

Modeling Assumptions

61

The Dangers of Optimism and Pessimism

Dangerous Optimism
Assuming chance when the world is

adversarial

Dangerous Pessimism
Assuming the worst case when it’s not

likely

62

Video of Demo World Assumptions
Random Ghost – Expectimax Pacman

63

Video of Demo World Assumptions
Random Ghost – Minimax Pacman

64

Video of Demo World Assumptions
Adversarial Ghost – Expectimax Pacman

65

Video of Demo World Assumptions
Adversarial Ghost – Minimax Pacman

66

Assumptions vs. Reality

Adversarial Ghost Random Ghost

Minimax
Pacman

Won 5/5

Avg. Score: 483

Won 5/5

Avg. Score: 493

Expectimax
Pacman

Won 1/5

Avg. Score: -303

Won 5/5

Avg. Score: 503

Results from playing 5 games

Pacman used depth 4 search with an eval function that avoids trouble
Ghost used depth 2 search with an eval function that seeks Pacman

67

Maximum Expected Utility

• Why should we average utilities? Why not minimax?

• Principle of maximum expected utility:
• A rational agent should chose the action that maximizes its
expected utility, given its knowledge

• Questions:
• Where do utilities come from?
• How do we know such utilities even exist?
• How do we know that averaging even makes sense?
• What if our behavior (preferences) can’t be described by
utilities?

68

